• Нервно мышечный синапс рисунок. Виды синапсов, особенности их строения. Механизм передачи возбуждения через синапс. Физиологические свойства синапсов. Синапс: основные виды и функции

    Федеральное агентство по образованию

    Государственное образовательное учреждение

    высшего профессионального образования

    «Рязанский государственный университет имени С.А. Есенина»

    Институт психологии, педагогики и социальной работа

    Контрольная работа по дисциплине «Нейрофизиология и основы ВНД»

    по теме: «Понятие о синапсе, строение синапса.

    Передача возбуждения в синапсе»

    Выполнил студент 13Л группы

    1курса ОЗО(3) А.И. Шарова

    Проверил:

    профессор медицинских наук

    О.А. Белова

    Рязань 2010

    1. Введение……………………………………………………………..3

    2. Структура и функции синапса……………………………………...6

    3. Передача возбуждения в синапсе………………………………….8

    4. Химический синапс…………………………………………………9

    5. Выделение медиатора……………………………………………...10

    6. Химические медиаторы и их виды………………………………..12

    7. Заключение……………………………………………………………15

    8. Список литературы………………………………………………....17

    Введение .

    Наше тело - один большой часовой механизм. Он состоит из огромнейшего количества мельчайших частиц, которые расположены в строгом порядке и каждая из них выполняет определённые функции, и имеет свои неповторимые свойства. Этот механизм - тело, состоит из клеток, соединяющих их тканей и систем: все это в целом представляет собой единую цепочку, сверхсистему организма. Величайшее множество клеточных элементов не могли бы работать как единое целое, если бы в организме не существовал утонченный механизм регуляции. Особую роль в регуляции играет нервная система. Вся сложная работа нервной системы - регулирование работы внутренних органов, управление движениями, будь то простые и неосознаваемые движения (например, дыхание) или сложные, движения рук человека - все это, в сущности, основано на взаимодействии клеток между собой. Все это, в сущности, основано на передаче сигнала от одной клетке к другой. Причем, каждая клетка выполняет свою работу, а иногда имеет несколько функций. Разнообразие функций обеспечивается двумя факторами: тем, как клетки соединены между собой, и тем, как устроены эти соединения. Переход (передача) возбуждения с нервного волокна на иннервируемую им клетку (нервную, мышечную, секреторную) осуществляется через специализированное образование, которое получило название синапс.

    Структура и функции синапса.

    Каждый многоклеточный организм, каждая ткань, состоящая из клеток, нуждается в механизмах, обеспечивающих межклеточные взаимодействия. Рассмотрим, как осуществляются межнейронные взаимодействия. По нервной клетке информация распространяется в виде потенциалов действия. Передача возбуждения с аксонных терминалей на иннервируемый орган или другую нервную клетку происходит через межклеточные структурные образования - синапсы (от греч. «Synapsis» -соединение, связь). Понятие синапс было введено английским физиологом Ч. Шеррингтоном в 1897 году, для обозначения функционального контакта между нейронами. Следует отметить, что еще в 60-х годах прошлого столетия И.М. Сеченов подчеркивал, что вне межклеточной связи нельзя объяснить способы происхождения даже самого нервного элементарного процесса. Чем сложнее устроена нервная система, и чем больше число составляющих нервных мозговых элементов, тем важнее становится значение синаптических контактов.

    Различные синаптические контакты отличаются друг от друга. Однако при всем многообразии синапсов существуют определенные общие свойства их структуры и функции. Поэтому сначала опишем общие принципы их функционирования.

    Синапс - представляет собой сложное структурное образование, состоящее из

      пресинаптической мембраны - электрогенная мембрана в терминале аксона, образует синапс на мышечной клетке (чаще всего это концевое разветвление аксона)

      постсинаптической мембраны - электрогенная мембрана иннервируемой клетки, на которой образован синапс (чаще всего это участок мембраны тела или дендрита другого нейрона)

      синаптической щели - пространство между пресинаптической и постсинаптической мембраной, заполнена жидкостью, которая по составу напоминает плазму крови

    Синапсы могут быть между двумя нейронами (межнейронные) , между нейроном и мышечным волокном (нервно-мышечные) , между рецепторными образованиями и отростками чувствительных нейронов (рецепторно-нейронные) , между отростками нейрона и другими клетками (железистыми) .

    Существует несколько классификаций синапсов.

    1. По локализации :

    1) центральные синапсы;

    2) периферические синапсы.

    Центральные синапсы лежат в пределах центральной нервной системы, а также находятся в ганглиях вегетативной нервной системы.

    Центральные синапсы – это контакты между двумя нервными клетками, причем эти контакты неоднородны и в зависимости от того, на какой структуре первый нейрон образует синапс со вторым нейроном, различают:

    а) аксосоматический, образованный аксоном одного нейрона и телом другого нейрона;

    б) аксодендритный, образованный аксоном одного нейрона и дендритом другого;

    в) аксоаксональный (аксон первого нейрона образует синапс на аксоне второго нейрона);

    г) дендродентритный (дендрит первого нейрона образует синапс на дендрите второго нейрона).

    Различают несколько видов периферических синапсов :

    а) мионевральный (нервно-мышечный), образованный аксоном мотонейрона и мышечной клеткой;

    б) нервно-эпителиальный, образованный аксоном нейрона и секреторной клеткой.

    2. Функциональная классификация синапсов :

    1) возбуждающие синапсы;

    2) тормозящие синапсы.

    Синапс возбуждающий - синапс, в котором возбуждается постсинаптическая мембрана; в ней возникает возбуждающий постсинаптический потенциал и пришедшее к синапсу возбуждение распространяется дальше.

    Синапс тормозной - А. Синапс, на постсинаптической мембране которого возникает тормозной постсинаптический потенциал, и пришедшее к синапсу возбуждение не распространяется дальше; Б. возбуждающий аксо- аксональный синапс, вызывающий пресинаптическое торможение.

    3. По механизмам передачи возбуждения в синапсах :

    1) химические;

    2) электрические;

    3) смешанные

    Особенность химических синапсов заключается в том, что передача возбуждения осуществляется при помощи особой группы химических веществ – медиаторов. Отличается большей специализированностью, чем электрический синапс.

    Различают несколько видов химических синапсов , в зависимости от природы медиатора:

    а) холинэргические.

    б) адренэргические.

    в) дофаминэргические. В них происходит передача возбуждения при помощи дофамина;

    г) гистаминэргические. В них происходит передача возбуждения при помощи гистамина;

    д) ГАМКэргические. В них происходит передача возбуждения при помощи гаммааминомасляной кислоты, т. е. развивается процесс торможения.

    Синапс адренергический - синапс, медиатором в котором является норадреналин. В нем происходит передача возбуждения при помощи трех катехоламинов; различают a1-, b1-, и b2 - адренергический синапсы. Они образуют нейроорганные синапсы симпатической нервной системы и синапсы ЦНС. Возбуждение a- адренореактивных синапсов вызывает сужение сосудов, сокращение матки; b1- адренореактивных синапсов - усиление работы сердца; b2 - адренореактивных - расширение бронхов.

    Синапс холинергический - медиатором в нем является ацетилхолин. Они делятся на синапсы н-холинергические и м-холинергические.

    В м-холинергическом синапсе постсинаптическая мембрана чувствительна к мускарину. Эти синапсы образуют нейроорганные синапсы парасимпатической системы и синапсы ЦНС.

    В н-холинергическом синапсе постсинаптическая мембрана чувствительна к никотину. Этот вид синапсов образуют нервно-мышечные синапсы соматической нервной системы, ганглионарные синапсы, синапсы симпатической и парасимпатической нервной системы, синапсы ЦНС.

    Синапс электрический - в нем возбуждение от пре- к постсинаптической мембране передается электрическим путем, т.е. совершается эфаптическая передача возбуждения - потенциал действия достигает пресинаптического окончания и далее распространяется по межклеточным каналам, вызывая деполяризацию постсинаптической мембраны. В электрическом синапсе медиатор не вырабатывается, синаптическая щель мала (2 - 4 нм) и в ней имеются белковые мостики-каналы, шириной 1 - 2 нм, по которым движутся ионы и небольшие молекулы. Это способствует низкому сопротивлению постсинаптической мембраны. Этот вид синапсов встречается значительно реже, чем химические и отличаются от них большей скоростью передачи возбуждения, высокой надежностью, возможностью двухстороннего проведения возбуждения.

    Синапсы имеют ряд физиологических свойств :

    1) клапанное свойство синапсов , т. е. способность передавать возбуждение только в одном направлении с пресинаптической мембраны на постсинаптическую;

    2) свойство синаптической задержки , связанное с тем, что скорость передачи возбуждения снижается;

    3) свойство потенциации (каждый последующий импульс будет проводиться с меньшей постсинаптической задержкой). Это связано с тем, что на пресинаптической и постсинаптической мембране остается медиатор от проведения предыдущего импульса;

    4) низкая лабильность синапса (100–150 имульсов в секунду).

    Передача возбуждения в синапсе.

    Механизм передачи через синапс долгое время оставался невыясненным, хотя было очевидно, что передача сигналов в синаптической области резко отличается от процесса проведения потенциала действия по аксону. Однако в начале XX века была сформулирована гипотеза, что синаптическая передача осуществляется или электрическим или химическим путем. Электрическая теория синаптической передачи в ЦНС пользовалась признанием до начала 50-х годов, однако она значительно сдала свои позиции после того, как химический синапс был продемонстрирован в ряде периферических синапсов. Так, например, А.В. Кибяков, проведя опыт на нервном ганглии, а также использование микроэлектродной техники для внутриклеточной регистрации синаптических потенциал нейронов ЦНС позволили сделать вывод о химической природе передачи в межнейрональных синапсах спинного мозга.

    Микроэлектродные исследования последних лет показали, что в определенных межнейронных синапсах существует электрический механизм передачи. В настоящее время стало очевидным, что есть синапсы, как с химическим механизмом передачи, так и с электрическим. Более того, в некоторых синаптических структурах вместе функционируют и электрический и химический механизмы передачи - это так называемые смешанные синапсы.

    Если электрические синапсы характерны для нервной системы более примитивных животных (нервная диффузионная система кишечнополостных, некоторые синапсы рака и кольчатых червей, синапсы нервной системы рыб), хотя они и обнаружены в мозге млекопитающих. Во всех перечисленных выше случаях импульсы передаются посредством деполяризующего действия электрического тока, который генерируется в пресинаптическом элементе. Хотелось бы также отметить, что в случае электрических синапсов возможна передача импульсов как в одном, так и в двух направлениях. Также у низших животных контакт между пресинаптическим и постсинаптическим элементом осуществляется посредством всего одного синапса - моносинаптическая форма связи, однако в процессе филогенеза осуществляется переход к полисинаптической форме связи, то есть, когда указанный выше контакт осуществляется посредством большего числа синапсов.

    Однако, в данной работе, мне хотелось бы подробнее остановиться на синапсах с химическим механизмом передачи, которые составляют большую часть синаптического аппарата ЦНС высших животных и человека. Таким образом, химические синапсы, на мой взгляд, особенно интересны, так как они обеспечивают очень сложные взаимодействия клеток, а также связаны с рядом патологических процессов и изменяют свои свойства под влиянием некоторых лекарственных средств.

    Последнее обновление: 29/09/2013

    Синапс – определение, структура, роль синапса в строении нервной системы

    Синапс в структуре нервной системы – это небольшой участок в окончании нейона, отвечающий за передачу информации между нервными клетками. В его формировании участвуют две клетки – передающая и воспринимающая.

    Определение понятия

    Синапс является небольшим отделом в окончании нейрона. С его помощью ведется передача информации от одного нейрона к другому. Синапсы располагаются в тех участках нервных клеток, где они контактируют друг с другом. Кроме того, синапсы имеются в местах, где нервные клетки вступают в соединение с различными мышцами или железами организма.

    Строение синапса

    Структура синапса состоит из трех частей, каждая из которых несет свои функции в процессе передачи информации. В его строении задействованы обе клетки, и передающая, и воспринимающая.

    На конце аксона передающей клетки располагается начальная часть синапса – пресинаптическое окончание. Оно способно вызывать в клетке запуск (термин имеет несколько названий – «нейромедиаторы», «посредники», «медиаторы») – специальных химических веществ, благодаря которым реализовывается передача электрического сигнала между двумя нейронами.

    Средняя часть синапса является синаптической щелью – пространством между двумя вступающими во взаимодействие нервными клетками. Именно через эту щель и идет электрический импульс от передающей клетки.

    Заключительная часть синапса является частью клетки воспринимающей и называется постсинаптическим окончанием – контактирующем фрагментом клетки со множеством чувствительных рецепторов в своей структуре.

    Механизм работы синапса

    Из пресинаптического окончания вниз по аксону нейрона проходит электрический заряд от передающей клетки к воспринимающей. Он запускает выброс в синаптическую щель нейротрансмиттеров. Данные медиаторы двигаются через синаптическую щель до постсинаптического окончания следующей клетки, где вступают во взаимодействие с многочисленными ее рецепторами. Данный процесс вызывает цепь биохимических реакций и, как следствие, провоцирует запуск электрического импульса с кратким изменением своего потенциала на участке клетки. Данное явление известно как потенциал действия (или волна возбуждения при прохождении нервного сигнала).

    6259 0

    Соединение между двумя соседними нейронами (нервными клетками) называется синапсом. Синапсы - это соединения, которые соединяют один нейрон (пресинаптический) с другим (постсинаптическим). По сути, синапсы представляют собой небольшие сужения. Физического соединения между клетками нет. Небольшие уплотнения, называемые синаптическими шишками, на конце каждого пресинаптического аксона подходят к дендритам, аксонам или телам постсинаптических клеток. Именно через синаптические шишки исходят нейротрансмиттеры.

    Нейротрансмиттеры

    Нейротрансмиттеры — это молекулы, которые выполняют роль химических сигналов, передавая электрический импульс от одной клетки к другой. Она расположены на синапсах между синаптическими путями одного нейрона и дендритами другого. Химические вещества, которые позволяют бесперебойно передавать импульс через нейроны, называются возбуждающими нейротрансмиттерами. Подавляющие нейротрансмиттеры блокируют электрические импульсы.

    Соединение между двумя нейронами

    Анатомия синапса

    На конце аксона находится синаптическая шишка. Она не касается соседнего нейрона, а оставляет небольшую щель, или синапс, между пре- и пост- синаптическими мембранами. Митохондрии в аксоне производят энергию, необходимую для высвобождения нейротрансмиттеров. Они находятся в маленьких везикулах (полостях) перед тем, как выйти через пресинаптическую решетку, пересечь щель и перейти к постсинаптической мембране.

    Как работают синапсы

    1 Нервный импульс поступает в синаптическую шишку нейрона.

    2 В синапсе высвобождаются нейротрансмиттеры.

    3 Нейротрансмиттеры быстро проходят через щель, и молекулы попадают на рецепторы мембраны постсинаптического нейрона.

    4
    Это вызывает изменения в проницаемости постсинаптической мембраны для ионов натрия, и его положительные ионы проходят в постсинаптический нейрон, вызывая деполяризацию. В результате нервный импульс передается следующему нейрону.



    И.А. Борисова

    Московский Психолого- социальный Институт (МПСИ)

    Реферат по Анатомии ЦНС на тему:

    СИНАПСЫ (строение, структура, функции).

    Студент 1 курса Психологического факультета,

    группа 21/1-01 Логачёв А.Ю.

    Преподаватель:

    Холодова Марина Владимировна.

    2001 год.


    План работы:

    1.Пролог.

    2.Физиология нейрона и его строение.

    3.Структура и функции синапса.

    4.Химический синапс.

    5.Выделение медиатора.

    6.Химические медиаторы и их виды.

    7.Эпилог.

    8.Список литературы.


    ПРОЛОГ:

    Наше тело - один большой часовой механизм. Он состоит из огромнейшего количества мельчайших частиц, которые расположены в строгом порядке и каждая из них выполняет определённые функции, и имеет свои неповторимые свойства. Этот механизм - тело, состоит из клеток, соединяющих их тканей и систем: все это в целом представляет собой единую цепочку, сверхсистему организма. Величайшее множество клеточных элементов не могли бы работать как единое целое, если бы в организме не существовал утонченный механизм регуляции. Особую роль в регуляции играет нервная система. Вся сложная работа нервной системы - регулирование работы внутренних органов, управление движениями, будь то простые и неосознаваемые движения (например, дыхание) или сложные, движения рук человека - все это, в сущности, основано на взаимодействии клеток между собой. Все это, в сущности, основано на передаче сигнала от одной клетке к другой. Причем, каждая клетка выполняет свою работу, а иногда имеет несколько функций. Разнообразие функций обеспечивается двумя факторами: тем, как клетки соединены между собой, и тем, как устроены эти соединения.

    ФИЗИОЛОГИЯ НЕЙРОНА И ЕГО СТРОЕНИЕ:

    Простейшая реакция нервной системы на внешний раздражитель - это рефлекс. Прежде всего, рассмотрим строение и физиологию структурной элементарной единицы нервной ткани животных и человека - нейрона. Функциональные и основные свойства нейрона определяются его способностью к возбуждению и самовозбуждению. Передача возбуждения осуществляется по отросткам нейрона - аксонам и дендритам.

    Аксоны - более длинные и широкие отростки. Они обладают рядом специфических свойств: изолированным проведением возбуждения и двусторонней проводимостью.

    Нервные клетки способны не только воспринимать и перерабатывать внешнее возбуждение, но и самопроизвольно выдавать импульсы, не вызванные внешним раздражением (самовозбуждение). В ответ на раздражение, нейрон отвечает импульсом активности - потенциалом действия, частота генерации которых колеблется от 50-60 импульсов в секунду (для мотонейронов), до 600-800 импульсов в секунду (для вставочных нейронов головного мозга). Аксон заканчивается множеством тоненьких веточек, которые называются терминалями. С терминалей импульс переходит на другие клетки, непосредственно на их тела или чаще на их отростки дендриты. Количество терминалей у аксона, может достигать до одной тысячи, которые оканчиваются в разных клетках. С другой стороны, типичный нейрон позвоночного имеет от 1000 до 10000 терминалей от других клеток.

    Дендриты - более короткие и многочисленные отростки нейронов. Они воспринимают возбуждение от соседних нейронов и проводят его к телу клетки. Различают мякотные и безмякотные нервные клетки и волокна.

    Мякотные волокна - входят в состав чувствительных и двигательных нервов скелетной мускулатуры и органов чувств Они покрыты липидной миелиновой оболочкой. Мякотные волокна более «быстродействующие»: в таких волокнах диаметром 1-3,5 микромиллиметра, возбуждение распространяется со скоростью 3-18 м/с. Это объясняется тем, что проведение импульсов по миелинизированному нерву происходит скачкообразно. При этом потенциал действия «перескакивает» через участок нерва, покрытый миелином и в месте перехвата Ранвье (оголенный участок нерва), переходит на оболочку осевого цилиндра нервного волокна. Миелиновая оболочка является хорошим изолятором и исключает передачу возбуждения на соединение, параллельно идущие нервные волокна.

    Безмякотные волокна - составляют основную часть симпатических нервов. Они не имеют миелиновой оболочки и отделены друг от друга клетками нейроглии.

    В безмякотных волокнах роль изоляторов выполняют клетки нейроглии (нервной опорной ткани). Швановские клетки - одна из разновидностей глиальных клеток. Помимо внутренних нейронов, воспринимающих и преобразующих импульсы, поступающие от других нейронов, существуют нейроны, воспринимающие воздействия непосредственно из окружающей среды - это рецепторы, а так же нейроны, непосредственно воздействующие на исполнительные органы - эффекторы, например, на мышцы или железы. Если нейрон воздействует на мышцу, его называют моторным нейроном или мотонейроном. Среди нейрорецепторов различают 5 типов клеток, в зависимости от вида возбудителя:

    - фоторецепторы, которые возбуждаются под воздействием света и обеспечивают работу органов зрения,

    - механорецепторы, те рецепторы, которые реагируют на механические воздействия. Они располагаются в органах слуха, равновесия. Осязательные клетки также являются механорецепторами. Некоторые механорецепторы располагаются в мышцах и измеряют степень их растяжения.

    - хеморецепторы - избирательно реагируют на присутствие или изменение концентрации различных химических веществ, на них основана работа органов обоняния и вкуса,

    - терморецепторы, реагируют на изменение температуры либо на ее уровень - холодовые и тепловые рецепторы,

    - электрорецепторы реагируют на токовые импульсы, и имеются у некоторых рыб, амфибий и млекопитающих, например, у утконоса.

    Исходя из выше сказанного, хотелось бы отметить, что долгое время среди биологов, изучавших нервную систему, существовало мнение, что нервные клетки образуют длинные сложные сети, непрерывно переходящие одна в другую.

    Однако в 1875 году, итальянский ученый, профессор гистологии университета в Павии, придумал новый способ окраски клеток - серебрение. При серебрении одной из тысяч лежащих рядом клеток окрашивается только она - единственная, но зато полностью, со всеми своими отростками. Метод Гольджи сильно помог изучению строения нервных клеток. Его использование показало, что, не смотря на то, что клетки в головном мозгу расположены чрезвычайно близко друг к другу, и их отростки перепутаны, все же каждая клетка четко отделяется. То есть мозг, как и другие ткани, состоит из отдельных, не объединенных в общую сеть клеток. Этот вывод был сделан испанским гистологом С. Рамон-и-Кахалем, который тем самым распространил клеточную теорию на нервную систему. Отказ от представления об объединенной сети, означал, что в нервной системе импульс переходит с клетки на клетку не через прямой электрический контакт, а через разрыв.

    Когда в биологии стал использоваться электронный микроскоп, который был изобретен в 1931 году М. Кноллем и Э. Руска, эти представления о наличии разрыва получили прямое подтверждение.

    СТРУКТУРА И ФУНКЦИИ СИНАПСА:

    Каждый многоклеточный организм, каждая ткань, состоящая из клеток, нуждается в механизмах, обеспечивающих межклеточные взаимодействия. Рассмотрим, как осуществляются межнейронные взаимодействия. По нервной клетке информация распространяется в виде потенциалов действия. Передача возбуждения с аксонных терминалей на иннервируемый орган или другую нервную клетку происходит через межклеточные структурные образования - синапы (от греч. «Synapsis» -соединение, связь). Понятие синапс было введено английским физиологом Ч. Шеррингтоном в 1897 году, для обозначения функционального контакта между нейронами. Следует отметить, что еще в 60-х годах прошлого столетия И.М. Сеченов подчеркивал, что вне межклеточной связи нельзя объяснить способы происхождения даже самого нервного элементарного процесса. Чем сложнее устроена нервная система, и чем больше число составляющих нервных мозговых элементов, тем важнее становится значение синаптических контактов.

    Различные синаптические контакты отличаются друг от друга. Однако при всем многообразии синапсов существуют определенные общие свойства их структуры и функции. Поэтому сначала опишем общие принципы их функционирования.

    Синапс - представляет собой сложное структурное образование, состоящее из пресинаптической мембраны (чаще всего это концевое разветвление аксона), постсинаптической мембраны (чаще всего это участок мембраны тела или дендрита другого нейрона), а так же синаптической щели.

    Механизм передачи через синапс долгое время оставался невыясненным, хотя было очевидно, что передача сигналов в синаптической области резко отличается от процесса проведения потенциала действия по аксону. Однако в начале XX века была сформулирована гипотеза, что синаптическая передача осуществляется или электрическим или химическим путем. Электрическая теория синаптической передачи в ЦНС пользовалась признанием до начала 50-х годов, однако она значительно сдала свои позиции после того, как химический синапс был продемонстрирован в ряде периферических синапсов. Так, например, А.В. Кибяков, проведя опыт на нервном ганглии, а также использование микроэлектродной техники для внутриклеточной регистрации синаптических потенциалов


    нейронов ЦНС позволили сделать вывод о химической природе передачи в межнейрональных синапсах спинного мозга.

    Микроэлектродные исследования последних лет показали, что в определенных межнейронных синапсах существует электрический механизм передачи. В настоящее время стало очевидным, что есть синапсы, как с химическим механизмом передачи, так и с электрическим. Более того, в некоторых синаптических структурах вместе функционируют и электрический и химический механизмы передачи - это так называемые смешанные синапсы.

    Синапс (греч. synapsis соприкосновение, соединение) - специализированная зона контакта между отростками нервных клеток и другими возбудимыми и невозбудимыми клетками, обеспечивающая передачу информационного сигнала. Морфологически синапс образован контактирующими мембранами двух клеток. Мембрана, принадлежащая отросткам нервных клеток, называется пресинаптической, мембрана клетки, к которой передается сигнал, - постсинаптической. В соответствии с принадлежностью постсинаптической мембраны синапса подразделяют на нейросекреторные, нейромышечные и межнейрональные. Термин «синапс» был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.

    Синапс - особая структура, обеспечивающая передачу нервного импульса с нервного волокна на какую-либо другую нервную клетку или нервное волокно, также с рецепторной клетки на нервное волокно (область соприкосновения нервных клеток друг с другом и другой нервной клеткой). Для образования синапса необходимы 2 клетки.

    Структура синапса

    Типичный синапс - аксо-дендритический химический. Такой синапс состоит из двух частей: пресинаптической, образованной булавовидным расширением окончанием аксона передающей клетки и постсинаптической, представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае - участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток, к которым подходят нервные окончания.

    Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую. Между обеими частями имеется синаптическая щель, края которой укреплены межклеточными контактами. Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели называется пресинаптической мембраной . Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной , в химических синапсах она рельефна и содержит многочисленные рецепторы. В синаптическом расширении имеются мелкие везикулы, так называемые синаптические пузырьки, содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент, разрушающий этот медиатор. На постсинаптической и пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

    Классификации синапсов

    В зависимости от механизма передачи нервного импульса различают

    • химические ;
    • электрические - клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе - 3,5 нм (обычное межклеточное - 20 нм); Так как сопротивление внеклеточной жидкости мало (в данном случае), импульсы проходят не задерживаясь через синапс. Электрические синапсы обычно бывают возбуждающими.
    • смешанные синапсы : Пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом. Наиболее распространён первый тип.

    Химические синапсы можно классифицировать по их местоположению и принадлежности соответствующим структурам:

    • периферические
      • нервно-мышечные
      • нейросекреторные (аксо-вазальные)
      • рецепторно-нейрональные
    • центральные
      • аксо-дендритические - с дендритами, в т. ч.
      • аксо-шипиковые - с дендритными шипиками, выростами на дендритах;
      • аксо-соматические - с телами нейронов;
      • аксо-аксональные - между аксонами;
      • дендро-дендритические - между дендритами;

    В зависимости от медиатора синапсы разделяются на

    • аминергические, содержащие биогенные амины (например, серотонин, дофамин;) o в том числе адренергические, содержащие адреналин или норадреналин;
    • холинергические, содержащие ацетилхолин;
    • пуринергические, содержащие пурины;
    • пептидергические, содержащие пептиды. При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора.

    По знаку действия:

    • возбуждающие
    • тормозные.

    Если первые способствуют возникновению возбуждения в постсинаптической клетке (в них в результате поступления импульса происходит деполяризация мембраны, которая может вызвать потенциал действия при определённых условиях.), то вторые, напротив, прекращают или предотвращают его появление, препятствуют дальнейшему распространению импульса. Обычно тормозными являются глицинергические (медиатор - глицин) и ГАМК-ергические синапсы (медиатор - гамма-аминомасляная кислота).

    Таким образом, тормозные синапсы бывают двух видов:

    1. синапс, в пресинаптических окончаниях которого выделяется медиатор, гиперполяризующий постсинаптическую мембрану и вызывающий возникновение тормозного постсинаптического потенциала;
    2. аксо-аксональный синапс, обеспечивающий пресинаптическое торможение.

    Синапс холинергический (s. cholinergica) - синапс, медиатором в котором является ацетилхолин. В некоторых синапсах присутствует постсинаптическое уплотнение - электронно-плотная зона, состоящая из белков. По её наличию или отсутствию выделяют синапсы асимметричные и симметричные. Известно, что все глутаматергические синапсы асимметричны, а ГАМК-ергические - симметричны. В случаях, когда с постсинаптической мембраной контактирует несколько синаптических расширений, образуются множественные синапсы. К специальным формам синапсов относятся шипиковые аппараты, в которых с синаптическим расширением контактируют короткие одиночные или множественные выпячивания постсинаптической мембраны дендрита. Шипиковые аппараты значительно увеличивают количество синаптических контактов на нейроне и, следовательно, количество перерабатываемой информации. «Не-шипиковые» синапсы называются «сидячими». Например, сидячими являются все ГАМК-ергические синапсы.

    Механизм функционирования химического синапса При деполяризации пресинаптической терминали открываются потенциал-чувствительные кальциевые каналы, ионы кальция входят в пресинаптическую терминаль и запускают механизм слияния синаптических пузырьков с мембраной, вследствие чего медиатор выходит в синаптическую щель и соединяется с белками-рецепторами постсинаптической мембраны, которые делятся на метаботропные и ионотропные. Первые связаны с G-белком и запускают каскад реакций внутриклеточной передачи сигнала, вторые связаны с ионными каналами, которые открываются при связывании с ними нейромедиатора, что приводит к изменению мембранного потенциала.

    Медиатор действует в течение очень короткого времени, после чего разрушается специфическим ферментом. Например, в холинэргических синапсах фермент, разрушающий медиатор в синаптической щели - ацетилхолинэстераза. Одновременно часть медиатора может перемещаться через постсинаптическую мембрану (прямой захват) и в обратном направлении через пресинаптическую мембрану (обратный захват). В ряде случаев медиатор также поглощается соседними клетками нейроглии. Открыты два механизма высвобождения: с полным слиянием везикулы с плазмалеммой и так называемый «поцеловал и убежал» (англ. kiss-and-run), когда везикула соединяется с мембраной, и из неё в синаптическую щель выходят небольшие молекулы, а крупные остаются в везикуле. Второй механизм, предположительно, быстрее первого, с помощью него происходит синаптическая передача при высоком содержании ионов кальция в синаптической бляшке. Следствием такой структуры синапса является односторонее проведение нервного импульса.

    Существует так называемая синаптическая задержка - время, нужное для передачи нервного импульса. Её длительность - 0,5 мс. Так называемый «принцип Дейла» (один нейрон - один медиатор) признан ошибочным. Или, как иногда считают, он уточнён: из одного окончания клетки может выделяться не один, а несколько медиаторов, причём их набор постоянен для данной клетки.