• Небольшое сравнение L3 кэша в играх и приложениях. Что такое кэш, зачем он нужен и как работает Какой объем страницы используется для процессора

    Ч то является самым грязным местом на компьютере? Думаете, корзина? Папки пользователя? Система охлаждения? Не угадали! Самое грязное место – это кэш! Ведь его постоянно приходится чистить!

    На самом деле кэшей на компьютере много, и служат они не свалкой отходов, а ускорителями оборудования и приложений. Откуда же у них репутация «системного мусоропровода»? Давайте разберемся, что такое кэш, каким он бывает, как работает и почему время от времени .

    Понятие и виды кэш-памяти

    К эшем или кэш-памятью называют специальное хранилище часто используемых данных, доступ к которому осуществляется в десятки, сотни и тысячи раз быстрее, чем к оперативной памяти или другому носителю информации.

    Собственная кэш-память есть у приложений (веб-браузеров, аудио- и видеоплееров, редакторов баз данных и т. д.), компонентов операционных систем (кэш эскизов, DNS-кэш) и оборудования (cache L1-L3 центрального процессора, фреймбуфер графического чипа, буферы накопителей). Реализована она по-разному – программно и аппаратно.

    • Кеш программ – это просто отдельная папка или файл, куда загружаются, например, картинки, меню, скрипты, мультимедийный контент и прочее содержимое посещенных сайтов. Именно в такую папку в первую очередь «ныряет» браузер, когда вы открываете веб-страницу повторно. Подкачка части контента из локального хранилища ускоряет ее загрузку и .
    • В накопителях (в частности, жестких дисках) кэш представляет собой отдельный чип RAM емкостью 1-256 Mb, расположенный на плате электроники. В него поступает информация, считанная с магнитного слоя и пока не загруженная в оперативную память, а также данные, которые чаще всего запрашивает операционная система.
    • Современный центральный процессор содержит 2-3 основных уровня кеш-памяти (ее также называют сверхоперативной памятью), размещенных в виде аппаратных модулей на одном с ним кристалле. Самым быстрым и наименьшим по объему (32-64 Kb) является cache Level 1 (L1) – он работает на той же частоте, что и процессор. L2 занимает среднее положение по скорости и емкости (от 128 Kb до 12 Mb). А L3 – самый медленный и объемный (до 40 Mb), на некоторых моделях отсутствует. Скорость L3 является низкой лишь относительно его более быстрых собратьев, но и он в сотни раз шустрее самой производительной оперативки.

    Сверхоперативная память процессора применяется для хранения постоянно используемых данных, перекачанных из ОЗУ, и инструкций машинного кода. Чем ее больше, тем процессор быстрее.

    Сегодня три уровня кеширования – уже не предел. С появлением архитектуры Sandy Bridge корпорация Intel реализовала в своей продукции дополнительный cache L0 (предназначенный для хранения расшифрованных микрокоманд). А наиболее высокопроизводительные ЦП имеют и кэш четвертого уровня, выполненный в виде отдельной микросхемы.

    Схематично взаимодействие уровней cache L0-L3 выглядит так (на примере Intel Xeon):

    Человеческим языком о том, как всё это работает

    Ч тобы было понятно, как функционирует кэш-память, представим человека, работающего за письменным столом. Папки и документы, которые он использует постоянно, лежат на столе (в кэш-памяти ). Для доступа к ним достаточно протянуть руку.

    Бумаги, которые нужны ему реже, хранятся недалеко на полках (в оперативной памяти ). Чтобы их достать, нужно встать и пройти несколько метров. А то, с чем человек в настоящее время не работает, сдано в архив (записано на жесткий диск ).

    Чем шире стол, тем больше документов на нем поместится, а значит, работник сможет получить быстрый доступ к большему объему информации (чем емкость кэша больше, тем в теории быстрее работает программа или устройство ).

    Иногда он допускает ошибки – хранит на столе бумаги, в которых содержатся неверные сведения, и использует их в работе. В результате качество его труда снижается (ошибки в кэше приводят к сбоям в работе программ и оборудования ). Чтобы исправить ситуацию, работник должен выбросить документы с ошибками и положить на их место правильные (очистить кэш-память ).

    Стол имеет ограниченную площадь (кэш-память имеет ограниченный объем ). Иногда ее можно расширить, например, придвинув второй стол, а иногда нельзя (объем кэша можно увеличить, если такая возможность предусмотрена программой; кэш оборудования изменить нельзя, так как он реализован аппаратно ).

    Другой способ ускорить доступ к большему объему документов, чем вмещает стол – найти помощника, который будет подавать работнику бумаги с полки (операционная система может выделить часть неиспользуемой оперативной памяти для кэширования данных устройств ). Но это всё равно медленнее, чем брать их со стола.

    Документы, лежащие под рукой, должны быть актуальны для текущих задач. За этим обязан следить сам работник. Наводить порядок в бумагах нужно регулярно (вытеснение неактуальных данных из кэш-памяти ложится «на плечи» приложений, которые ее используют; некоторые программы имеют функцию автоматической очистки кэша ).

    Если сотрудник забывает поддерживать порядок на рабочем месте и следить за актуальностью документации, он может нарисовать себе график уборки стола и использовать его, как напоминание. В крайнем случае – поручить это помощнику (если зависимое от кэш-памяти приложение стало работать медленнее или часто загружает неактуальные данные, используйте средства очистки кэша по расписанию или раз в несколько дней проводите эту манипуляцию вручную ).

    С «функциями кэширования» мы на самом деле сталкиваемся повсеместно. Это и покупка продуктов впрок, и различные действия, которые мы совершаем мимоходом, заодно и т. д. По сути, это всё то, что избавляет нас от лишней суеты и ненужных телодвижений, упорядочивает быт и облегчает труд. То же самое делает и компьютер. Словом, если бы не было кэша, он бы работал в сотни и тысячи раз медленнее. И нам бы вряд ли это понравилось.

    Одним из немаловажных факторов повышающих производительность процессора, является наличие кэш-памяти, а точнее её объём, скорость доступа и распределение по уровням.

    Уже достаточно давно практически все процессоры оснащаются данным типом памяти, что ещё раз доказывает полезность её наличия. В данной статье, мы поговорим о структуре, уровнях и практическом назначении кэш-памяти, как об очень немаловажной характеристике процессора .

    Что такое кэш-память и её структура

    Кэш-память – это сверхбыстрая память используемая процессором, для временного хранения данных, которые наиболее часто используются. Вот так, вкратце, можно описать данный тип памяти.

    Кэш-память построена на триггерах, которые, в свою очередь, состоят из транзисторов. Группа транзисторов занимает гораздо больше места, нежели те же самые конденсаторы, из которых состоит оперативная память . Это тянет за собой множество трудностей в производстве, а также ограничения в объёмах. Именно поэтому кэш память является очень дорогой памятью, при этом обладая ничтожными объёмами. Но из такой структуры, вытекает главное преимущество такой памяти – скорость. Так как триггеры не нуждаются в регенерации, а время задержки вентиля, на которых они собраны, невелико, то время переключения триггера из одного состояния в другое происходит очень быстро. Это и позволяет кэш-памяти работать на таких же частотах, что и современные процессоры.

    Также, немаловажным фактором является размещение кэш-памяти. Размещена она, на самом кристалле процессора, что значительно уменьшает время доступа к ней. Ранее, кэш память некоторых уровней, размещалась за пределами кристалла процессора, на специальной микросхеме SRAM где-то на просторах материнской платы. Сейчас же, практически у всех процессоров, кэш-память размещена на кристалле процессора.


    Для чего нужна кэш-память процессора?

    Как уже упоминалось выше, главное назначение кэш-памяти – это хранение данных, которые часто используются процессором. Кэш является буфером, в который загружаются данные, и, несмотря на его небольшой объём, (около 4-16 Мбайт) в современных процессорах , он дает значительный прирост производительности в любых приложениях.

    Чтобы лучше понять необходимость кэш-памяти, давайте представим себе организацию памяти компьютера в виде офиса. Оперативная память будет являть собою шкаф с папками, к которым периодически обращается бухгалтер, чтобы извлечь большие блоки данных (то есть папки). А стол, будет являться кэш-памятью.

    Есть такие элементы, которые размещены на столе бухгалтера, к которым он обращается в течение часа по несколько раз. Например, это могут быть номера телефонов, какие-то примеры документов. Данные виды информации находятся прямо на столе, что, в свою очередь,увеличивает скорость доступа к ним.

    Точно так же, данные могут добавиться из тех больших блоков данных (папок), на стол, для быстрого использования, к примеру, какой-либо документ. Когда этот документ становится не нужным, его помещают назад в шкаф (в оперативную память), тем самым очищая стол (кэш-память) и освобождая этот стол для новых документов, которые будут использоваться в последующий отрезок времени.

    Также и с кэш-памятью, если есть какие-то данные, к которым вероятнее всего будет повторное обращение, то эти данные из оперативной памяти, подгружаются в кэш-память. Очень часто, это происходит с совместной загрузкой тех данных, которые вероятнее всего, будут использоваться после текущих данных. То есть, здесь присутствует наличие предположений о том, что же будет использовано «после». Вот такие непростые принципы функционирования.

    Уровни кэш-памяти процессора

    Современные процессоры, оснащены кэшем, который состоит, зачастую из 2–ух или 3-ёх уровней. Конечно же, бывают и исключения, но зачастую это именно так.

    В общем, могут быть такие уровни: L1 (первый уровень), L2 (второй уровень), L3 (третий уровень). Теперь немного подробнее по каждому из них:

    Кэш первого уровня (L1) – наиболее быстрый уровень кэш-памяти, который работает напрямую с ядром процессора, благодаря этому плотному взаимодействию, данный уровень обладает наименьшим временем доступа и работает на частотах близких процессору. Является буфером между процессором и кэш-памятью второго уровня.

    Мы будем рассматривать объёмы на процессоре высокого уровня производительности Intel Core i7-3770K. Данный процессор оснащен 4х32 Кб кэш-памяти первого уровня 4 x 32 КБ = 128 Кб. (на каждое ядро по 32 КБ)

    Кэш второго уровня (L2) – второй уровень более масштабный, нежели первый, но в результате, обладает меньшими «скоростными характеристиками». Соответственно, служит буфером между уровнем L1 и L3. Если обратиться снова к нашему примеру Core i7-3770 K, то здесь объём кэш-памяти L2 составляет 4х256 Кб = 1 Мб.

    Кэш третьего уровня (L3) – третий уровень, опять же, более медленный, нежели два предыдущих. Но всё равно он гораздо быстрее, нежели оперативная память. Объём кэша L3 в i7-3770K составляет 8 Мбайт. Если два предыдущих уровня разделяются на каждое ядро, то данный уровень является общим для всего процессора. Показатель довольно солидный, но не заоблачный. Так как, к примеру, у процессоров Extreme-серии по типу i7-3960X, он равен 15Мб, а у некоторых новых процессоров Xeon, более 20.

    Речь идет не о наличности, а о кэш -памяти процессоров и не только. Из объема кэш -памяти торгаши сделали очередной коммерческий фетиш, в особенности с кэшем центральных процессоров и жестких дисков (у видеокарт он тоже есть – но до него пока не добрались). Итак, есть процессор ХХХ с кэшем L2 объемом 1Мб, и точно такой же процессор XYZ с кэшем объемом 2Мб. Угадайте какой лучше? Аа – вот не надо так сразу!

    Кэш -память – это буфер, куда складывается то, что можно и/или нужно отложить на потом. Процессор выполняет работу и возникают ситуации, когда промежуточные данные нужно где-то сохранить. Ну конечно в кэше! – ведь он на порядки быстрее, чем оперативная память, т.к. он в самом кристалле процессора и обычно работает на той же частоте. А потом, через какое то время, эти данные он выудит обратно и будет снова их обрабатывать. Грубо говоря как сортировщик картошки на конвейере, который каждый раз, когда попадается что-то другое кроме картошки (морковка ) , бросает ее в ящик. А когда тот полон – встает и выносит его в соседнюю комнату. В этот момент конвейер стоит и наблюдается простой. Объем ящика и есть кэш в данной аналогии. И сколько его надо – 1Мб или 12? Понятно, что если его объем мал придется слишком много времени уделят выносу и будет простой, но с какого то объема его дальнейшее увеличение ничего не даст. Ну будет ящик у сортировщика на 1000кг морковки – да у него за всю смену столько ее не будет и от этого он НЕ СТАНЕТ В ДВА РАЗА БЫСТРЕЕ! Есть еще одна тонкость – большой кэш может вызывать увеличение задержек обращения к нему во-первых, а заодно повышается и вероятность возникновения ошибок в нем, например при разгоне – во-вторых. (о том КАК в этом случае определить стабильность/нестабильность процессора и выяснить что ошибка возникает именно в его кэше, протестировать L1 и L2 – можно прочесть тут.) В-третьих – кэш выжирает приличную площадь кристалла и транзисторный бюджет схемы процессора. То же самое касается и кэш памяти жестких дисков. И если архитектура процессора сильная – у него будет востребовано во многих приложениях 1024Кб кэша и более. Если у вас быстрый HDD – 16Мб или даже 32Мб уместны. Но никакие 64Мб кэша не сделают его быстрее, если это обрезок под названием грин версия (Green WD) с частотой оборотов 5900 вместо положеных 7200, пусть даже у последнего будет и 8Мб. Потом процессоры Intel и AMD по-разному используют этот кэш (вообще говоря AMD более эффективно и их процессоры часто комфортно довольствуются меньшими значениями). Вдобавок у Intel кэш общий, а вот у AMD он персональный у каждого ядра. Самый быстрый кэш L1 у процессоров AMD составляет по 64Кб на данные и инструкции, что вдвое больше, чем у Intel. Кэш третьего уровня L3 обычно присутствует у топовых процессоров наподобие AMD Phenom II 1055T X6 Socket AM3 2.8GHz или у конкурента в лице Intel Core i7-980X. Прежде всего большие объемы кэша любят игры. И кэш НЕ любят многие профессиональные приложения (см. Компьютер для рендеринга, видеомонтажа и профприложений). Точнее наиболее требовательные к нему вообще равнодушны. Но чего точно не стоит делать, так это выбирать процессор по объему кэша. Старенький Pentium 4 в последних своих проявлениях имел и по 2Мб кэша при частотах работы далеко за 3ГГц – сравните его производительность с дешевеньким двуядерничком Celeron E1***, работающим на частотах около 2ГГц. Он не оставит от старичка камня на камне. Более актуальный пример – высокочастотный двухъядерник E8600 стоимостью чуть не 200$ (видимо из-за 6Мб кэша) и Athlon II X4-620 2,6ГГц, у которого всего 2Мб. Это не мешает Атлону разделать конкурента под орех.

    Как видно на графиках – ни в сложных программах, ни в требовательных к процессору играх никакой кэш не заменит дополнительных ядер. Athlon с 2Мб кэша (красный) легко побеждает Cor2Duo с 6Мб кэша даже при меньшей частота и чуть не вдвое меньшей стоимости. Так же многие забывают, что кэш присутствует в видеокартах, потому что в них, вообще говоря, тоже есть процессоры. Свежий пример видеокарта GTX460, где умудряются не только порезать шину и объем памяти (о чем покупатель догадается) – но и КЭШ шейдеров соответственно с 512Кб до 384Кб (о чем покупатель уже НЕ догадается). А это тоже добавит свой негативный вклад в производительность. Интересно еще будет выяснить зависимость производительности от объема кэша. Исследуем как быстро она растет с увеличением объема кэша на примере одного и того же процессора. Как известно процессоры серии E6*** , E4*** и E2*** отличаются только объемом кэша (по 4, 2 и 1 Мб соответственно). Работая на одинаковой частоте 2400МГц они показывают следующие результаты.

    Как видно – результаты не слишком отличаются. Скажу больше – если бы участвовал процессор с объемом 6Мб – результат увеличился бы еще на чуть-чуть, т.к. процессоры достигают насыщения. А вот для моделей с 512Кб падение было бы ощутимым. Другими словами 2Мб даже в играх вполне достаточно. Резюмируя можно сделать такой вывод – кэш это хорошо, когда УЖЕ много всего остального. Наивно и глупо менять скорость оборотов винчестера или количество ядер процессора на объем кэша при равной стоимости, ибо даже самый емкий ящик для сортировки не заменит еще одного сортировщика Но есть и хорошие примеры.. Например Pentium Dual-Core в ранней ревизии по 65-нм процессу имел 1Мб кэша на два ядра (серия E2160 и подобные), а поздняя 45-нм ревизия серии E5200 и дальше имеет уже 2Мб при прочих равных условиях (а главное – ЦЕНЕ). Конечно же стоит выбирать именно последний.

    Одним из немаловажных факторов повышающих производительность процессора, является наличие кэш-памяти, а точнее её объём, скорость доступа и распределение по уровням.

    Уже достаточно давно практически все процессоры оснащаются данным типом памяти, что ещё раз доказывает полезность её наличия. В данной статье, мы поговорим о структуре, уровнях и практическом назначении кэш-памяти, как об очень немаловажной характеристике процессора .

    Что такое кэш-память и её структура

    Кэш-память – это сверхбыстрая память используемая процессором, для временного хранения данных, которые наиболее часто используются. Вот так, вкратце, можно описать данный тип памяти.

    Кэш-память построена на триггерах, которые, в свою очередь, состоят из транзисторов. Группа транзисторов занимает гораздо больше места, нежели те же самые конденсаторы, из которых состоит оперативная память . Это тянет за собой множество трудностей в производстве, а также ограничения в объёмах. Именно поэтому кэш память является очень дорогой памятью, при этом обладая ничтожными объёмами. Но из такой структуры, вытекает главное преимущество такой памяти – скорость. Так как триггеры не нуждаются в регенерации, а время задержки вентиля, на которых они собраны, невелико, то время переключения триггера из одного состояния в другое происходит очень быстро. Это и позволяет кэш-памяти работать на таких же частотах, что и современные процессоры.

    Также, немаловажным фактором является размещение кэш-памяти. Размещена она, на самом кристалле процессора, что значительно уменьшает время доступа к ней. Ранее, кэш память некоторых уровней, размещалась за пределами кристалла процессора, на специальной микросхеме SRAM где-то на просторах материнской платы. Сейчас же, практически у всех процессоров, кэш-память размещена на кристалле процессора.


    Для чего нужна кэш-память процессора?

    Как уже упоминалось выше, главное назначение кэш-памяти – это хранение данных, которые часто используются процессором. Кэш является буфером, в который загружаются данные, и, несмотря на его небольшой объём, (около 4-16 Мбайт) в современных процессорах , он дает значительный прирост производительности в любых приложениях.

    Чтобы лучше понять необходимость кэш-памяти, давайте представим себе организацию памяти компьютера в виде офиса. Оперативная память будет являть собою шкаф с папками, к которым периодически обращается бухгалтер, чтобы извлечь большие блоки данных (то есть папки). А стол, будет являться кэш-памятью.

    Есть такие элементы, которые размещены на столе бухгалтера, к которым он обращается в течение часа по несколько раз. Например, это могут быть номера телефонов, какие-то примеры документов. Данные виды информации находятся прямо на столе, что, в свою очередь,увеличивает скорость доступа к ним.

    Точно так же, данные могут добавиться из тех больших блоков данных (папок), на стол, для быстрого использования, к примеру, какой-либо документ. Когда этот документ становится не нужным, его помещают назад в шкаф (в оперативную память), тем самым очищая стол (кэш-память) и освобождая этот стол для новых документов, которые будут использоваться в последующий отрезок времени.

    Также и с кэш-памятью, если есть какие-то данные, к которым вероятнее всего будет повторное обращение, то эти данные из оперативной памяти, подгружаются в кэш-память. Очень часто, это происходит с совместной загрузкой тех данных, которые вероятнее всего, будут использоваться после текущих данных. То есть, здесь присутствует наличие предположений о том, что же будет использовано «после». Вот такие непростые принципы функционирования.

    Уровни кэш-памяти процессора

    Современные процессоры, оснащены кэшем, который состоит, зачастую из 2–ух или 3-ёх уровней. Конечно же, бывают и исключения, но зачастую это именно так.

    В общем, могут быть такие уровни: L1 (первый уровень), L2 (второй уровень), L3 (третий уровень). Теперь немного подробнее по каждому из них:

    Кэш первого уровня (L1) – наиболее быстрый уровень кэш-памяти, который работает напрямую с ядром процессора, благодаря этому плотному взаимодействию, данный уровень обладает наименьшим временем доступа и работает на частотах близких процессору. Является буфером между процессором и кэш-памятью второго уровня.

    Мы будем рассматривать объёмы на процессоре высокого уровня производительности Intel Core i7-3770K. Данный процессор оснащен 4х32 Кб кэш-памяти первого уровня 4 x 32 КБ = 128 Кб. (на каждое ядро по 32 КБ)

    Кэш второго уровня (L2) – второй уровень более масштабный, нежели первый, но в результате, обладает меньшими «скоростными характеристиками». Соответственно, служит буфером между уровнем L1 и L3. Если обратиться снова к нашему примеру Core i7-3770 K, то здесь объём кэш-памяти L2 составляет 4х256 Кб = 1 Мб.

    Кэш третьего уровня (L3) – третий уровень, опять же, более медленный, нежели два предыдущих. Но всё равно он гораздо быстрее, нежели оперативная память. Объём кэша L3 в i7-3770K составляет 8 Мбайт. Если два предыдущих уровня разделяются на каждое ядро, то данный уровень является общим для всего процессора. Показатель довольно солидный, но не заоблачный. Так как, к примеру, у процессоров Extreme-серии по типу i7-3960X, он равен 15Мб, а у некоторых новых процессоров Xeon, более 20.

    Одним из немаловажных факторов повышающих производительность процессора, является наличие кэш-памяти, а точнее её объём, скорость доступа и распределение по уровням.

    Уже достаточно давно практически все процессоры оснащаются данным типом памяти, что ещё раз доказывает полезность её наличия. В данной статье, мы поговорим о структуре, уровнях и практическом назначении кэш-памяти, как об очень немаловажной характеристике процессора.

    Что такое кэш-память и её структура

    Кэш-память – это сверхбыстрая память используемая процессором, для временного хранения данных, которые наиболее часто используются. Вот так, вкратце, можно описать данный тип памяти.

    Кэш-память построена на триггерах, которые, в свою очередь, состоят из транзисторов. Группа транзисторов занимает гораздо больше места, нежели те же самые конденсаторы, из которых состоит оперативная память. Это тянет за собой множество трудностей в производстве, а также ограничения в объёмах. Именно поэтому кэш память является очень дорогой памятью, при этом обладая ничтожными объёмами. Но из такой структуры, вытекает главное преимущество такой памяти – скорость. Так как триггеры не нуждаются в регенерации, а время задержки вентиля, на которых они собраны, невелико, то время переключения триггера из одного состояния в другое происходит очень быстро. Это и позволяет кэш-памяти работать на таких же частотах, что и современные процессоры.

    Также, немаловажным фактором является размещение кэш-памяти. Размещена она, на самом кристалле процессора, что значительно уменьшает время доступа к ней. Ранее, кэш память некоторых уровней, размещалась за пределами кристалла процессора, на специальной микросхеме SRAM где-то на просторах материнской платы. Сейчас же, практически у всех процессоров, кэш-память размещена на кристалле процессора.

    Для чего нужна кэш-память процессора?

    Как уже упоминалось выше, главное назначение кэш-памяти – это хранение данных, которые часто используются процессором. Кэш является буфером, в который загружаются данные, и, несмотря на его небольшой объём, (около 4-16 Мбайт) в современных процессорах, он дает значительный прирост производительности в любых приложениях.

    Чтобы лучше понять необходимость кэш-памяти, давайте представим себе организацию памяти компьютера в виде офиса. Оперативная память будет являть собою шкаф с папками, к которым периодически обращается бухгалтер, чтобы извлечь большие блоки данных (то есть папки). А стол, будет являться кэш-памятью.

    Есть такие элементы, которые размещены на столе бухгалтера, к которым он обращается в течение часа по несколько раз. Например, это могут быть номера телефонов, какие-то примеры документов. Данные виды информации находятся прямо на столе, что, в свою очередь,увеличивает скорость доступа к ним.

    Точно так же, данные могут добавиться из тех больших блоков данных (папок), на стол, для быстрого использования, к примеру, какой-либо документ. Когда этот документ становится не нужным, его помещают назад в шкаф (в оперативную память), тем самым очищая стол (кэш-память) и освобождая этот стол для новых документов, которые будут использоваться в последующий отрезок времени.

    Также и с кэш-памятью, если есть какие-то данные, к которым вероятнее всего будет повторное обращение, то эти данные из оперативной памяти, подгружаются в кэш-память. Очень часто, это происходит с совместной загрузкой тех данных, которые вероятнее всего, будут использоваться после текущих данных. То есть, здесь присутствует наличие предположений о том, что же будет использовано «после». Вот такие непростые принципы функционирования.

    Уровни кэш-памяти процессора

    Современные процессоры, оснащены кэшем, который состоит, зачастую из 2–ух или 3-ёх уровней. Конечно же, бывают и исключения, но зачастую это именно так.

    В общем, могут быть такие уровни: L1 (первый уровень), L2 (второй уровень), L3 (третий уровень). Теперь немного подробнее по каждому из них:

    Кэш первого уровня (L1) – наиболее быстрый уровень кэш-памяти, который работает напрямую с ядром процессора, благодаря этому плотному взаимодействию, данный уровень обладает наименьшим временем доступа и работает на частотах близких процессору. Является буфером между процессором и кэш-памятью второго уровня.

    Мы будем рассматривать объёмы на процессоре высокого уровня производительности Intel Core i7-3770K. Данный процессор оснащен 4х32 Кб кэш-памяти первого уровня 4 x 32 КБ = 128 Кб. (на каждое ядро по 32 КБ)

    Кэш второго уровня (L2) – второй уровень более масштабный, нежели первый, но в результате, обладает меньшими «скоростными характеристиками». Соответственно, служит буфером между уровнем L1 и L3. Если обратиться снова к нашему примеру Core i7-3770 K, то здесь объём кэш-памяти L2 составляет 4х256 Кб = 1 Мб.

    Кэш третьего уровня (L3) – третий уровень, опять же, более медленный, нежели два предыдущих. Но всё равно он гораздо быстрее, нежели оперативная память. Объём кэша L3 в i7-3770K составляет 8 Мбайт. Если два предыдущих уровня разделяются на каждое ядро, то данный уровень является общим для всего процессора. Показатель довольно солидный, но не заоблачный. Так как, к примеру, у процессоров Extreme-серии по типу i7-3960X, он равен 15Мб, а у некоторых новых процессоров Xeon, более 20.

    we-it.net

    Для чего нужен кэш и сколько его необходимо?

    Речь идет не о наличности, а о кэш-памяти процессоров и не только. Из объема кэш-памяти торгаши сделали очередной коммерческий фетиш, в особенности с кэшем центральных процессоров и жестких дисков (у видеокарт он тоже есть – но до него пока не добрались). Итак, есть процессор ХХХ с кэшем L2 объемом 1Мб, и точно такой же процессор XYZ с кэшем объемом 2Мб. Угадайте какой лучше? Аа – вот не надо так сразу!

    Кэш-память – это буфер, куда складывается то, что можно и/или нужно отложить на потом. Процессор выполняет работу и возникают ситуации, когда промежуточные данные нужно где-то сохранить. Ну конечно в кэше! – ведь он на порядки быстрее, чем оперативная память, т.к. он в самом кристалле процессора и обычно работает на той же частоте. А потом, через какое то время, эти данные он выудит обратно и будет снова их обрабатывать. Грубо говоря как сортировщик картошки на конвейере, который каждый раз, когда попадается что-то другое кроме картошки (морковка) , бросает ее в ящик. А когда тот полон – встает и выносит его в соседнюю комнату. В этот момент конвейер стоит и наблюдается простой. Объем ящика и есть кэш в данной аналогии. И сколько его надо – 1Мб или 12? Понятно, что если его объем мал придется слишком много времени уделят выносу и будет простой, но с какого то объема его дальнейшее увеличение ничего не даст. Ну будет ящик у сортировщика на 1000кг морковки – да у него за всю смену столько ее не будет и от этого он НЕ СТАНЕТ В ДВА РАЗА БЫСТРЕЕ! Есть еще одна тонкость – большой кэш может вызывать увеличение задержек обращения к нему во-первых, а заодно повышается и вероятность возникновения ошибок в нем, например при разгоне – во-вторых. (о том КАК в этом случае определить стабильность/нестабильность процессора и выяснить что ошибка возникает именно в его кэше, протестировать L1 и L2 – можно прочесть тут.) В-третьих – кэш выжирает приличную площадь кристалла и транзисторный бюджет схемы процессора. То же самое касается и кэш памяти жестких дисков. И если архитектура процессора сильная – у него будет востребовано во многих приложениях 1024Кб кэша и более. Если у вас быстрый HDD – 16Мб или даже 32Мб уместны. Но никакие 64Мб кэша не сделают его быстрее, если это обрезок под названием грин версия (Green WD) с частотой оборотов 5900 вместо положеных 7200, пусть даже у последнего будет и 8Мб. Потом процессоры Intel и AMD по-разному используют этот кэш (вообще говоря AMD более эффективно и их процессоры часто комфортно довольствуются меньшими значениями). Вдобавок у Intel кэш общий, а вот у AMD он персональный у каждого ядра. Самый быстрый кэш L1 у процессоров AMD составляет по 64Кб на данные и инструкции, что вдвое больше, чем у Intel. Кэш третьего уровня L3 обычно присутствует у топовых процессоров наподобие AMD Phenom II 1055T X6 Socket AM3 2.8GHz или у конкурента в лице Intel Core i7-980X. Прежде всего большие объемы кэша любят игры. И кэш НЕ любят многие профессиональные приложения (см. Компьютер для рендеринга, видеомонтажа и профприложений). Точнее наиболее требовательные к нему вообще равнодушны. Но чего точно не стоит делать, так это выбирать процессор по объему кэша. Старенький Pentium 4 в последних своих проявлениях имел и по 2Мб кэша при частотах работы далеко за 3ГГц – сравните его производительность с дешевеньким двуядерничком Celeron E1***, работающим на частотах около 2ГГц. Он не оставит от старичка камня на камне. Более актуальный пример – высокочастотный двухъядерник E8600 стоимостью чуть не 200$ (видимо из-за 6Мб кэша) и Athlon II X4-620 2,6ГГц, у которого всего 2Мб. Это не мешает Атлону разделать конкурента под орех.

    Как видно на графиках – ни в сложных программах, ни в требовательных к процессору играх никакой кэш не заменит дополнительных ядер. Athlon с 2Мб кэша (красный) легко побеждает Cor2Duo с 6Мб кэша даже при меньшей частота и чуть не вдвое меньшей стоимости. Так же многие забывают, что кэш присутствует в видеокартах, потому что в них, вообще говоря, тоже есть процессоры. Свежий пример видеокарта GTX460, где умудряются не только порезать шину и объем памяти (о чем покупатель догадается) – но и КЭШ шейдеров соответственно с 512Кб до 384Кб (о чем покупатель уже НЕ догадается). А это тоже добавит свой негативный вклад в производительность. Интересно еще будет выяснить зависимость производительности от объема кэша. Исследуем как быстро она растет с увеличением объема кэша на примере одного и того же процессора. Как известно процессоры серии E6*** , E4*** и E2*** отличаются только объемом кэша (по 4, 2 и 1 Мб соответственно). Работая на одинаковой частоте 2400МГц они показывают следующие результаты.

    Как видно – результаты не слишком отличаются. Скажу больше – если бы участвовал процессор с объемом 6Мб – результат увеличился бы еще на чуть-чуть, т.к. процессоры достигают насыщения. А вот для моделей с 512Кб падение было бы ощутимым. Другими словами 2Мб даже в играх вполне достаточно. Резюмируя можно сделать такой вывод – кэш это хорошо, когда УЖЕ много всего остального. Наивно и глупо менять скорость оборотов винчестера или количество ядер процессора на объем кэша при равной стоимости, ибо даже самый емкий ящик для сортировки не заменит еще одного сортировщика Но есть и хорошие примеры.. Например Pentium Dual-Core в ранней ревизии по 65-нм процессу имел 1Мб кэша на два ядра (серия E2160 и подобные), а поздняя 45-нм ревизия серии E5200 и дальше имеет уже 2Мб при прочих равных условиях (а главное – ЦЕНЕ). Конечно же стоит выбирать именно последний.

    compua.com.ua

    Что такое кэш, зачем он нужен и как работает

    Что является самым грязным местом на компьютере? Думаете, корзина? Папки пользователя? Система охлаждения? Не угадали! Самое грязное место – это кэш! Ведь его постоянно приходится чистить!

    На самом деле кэшей на компьютере много, и служат они не свалкой отходов, а ускорителями оборудования и приложений. Откуда же у них репутация «системного мусоропровода»? Давайте разберемся, что такое кэш, каким он бывает, как работает и почему время от времени нуждается в чистке.

    Кэшем или кэш-памятью называют специальное хранилище часто используемых данных, доступ к которому осуществляется в десятки, сотни и тысячи раз быстрее, чем к оперативной памяти или другому носителю информации.

    Собственная кэш-память есть у приложений (веб-браузеров, аудио- и видеоплееров, редакторов баз данных и т. д.), компонентов операционных систем (кэш эскизов, DNS-кэш) и оборудования (cache L1-L3 центрального процессора, фреймбуфер графического чипа, буферы накопителей). Реализована она по-разному – программно и аппаратно.

    • Кеш программ – это просто отдельная папка или файл, куда загружаются, например, картинки, меню, скрипты, мультимедийный контент и прочее содержимое посещенных сайтов. Именно в такую папку в первую очередь «ныряет» браузер, когда вы открываете веб-страницу повторно. Подкачка части контента из локального хранилища ускоряет ее загрузку и уменьшает сетевой трафик.

    • В накопителях (в частности, жестких дисках) кэш представляет собой отдельный чип RAM емкостью 1-256 Mb, расположенный на плате электроники. В него поступает информация, считанная с магнитного слоя и пока не загруженная в оперативную память, а также данные, которые чаще всего запрашивает операционная система.

    • Современный центральный процессор содержит 2-3 основных уровня кеш-памяти (ее также называют сверхоперативной памятью), размещенных в виде аппаратных модулей на одном с ним кристалле. Самым быстрым и наименьшим по объему (32-64 Kb) является cache Level 1 (L1) – он работает на той же частоте, что и процессор. L2 занимает среднее положение по скорости и емкости (от 128 Kb до 12 Mb). А L3 – самый медленный и объемный (до 40 Mb), на некоторых моделях отсутствует. Скорость L3 является низкой лишь относительно его более быстрых собратьев, но и он в сотни раз шустрее самой производительной оперативки.

    Сверхоперативная память процессора применяется для хранения постоянно используемых данных, перекачанных из ОЗУ, и инструкций машинного кода. Чем ее больше, тем процессор быстрее.

    Сегодня три уровня кеширования – уже не предел. С появлением архитектуры Sandy Bridge корпорация Intel реализовала в своей продукции дополнительный cache L0 (предназначенный для хранения расшифрованных микрокоманд). А наиболее высокопроизводительные ЦП имеют и кэш четвертого уровня, выполненный в виде отдельной микросхемы.

    Схематично взаимодействие уровней cache L0-L3 выглядит так (на примере Intel Xeon):

    Человеческим языком о том, как всё это работает

    Чтобы было понятно, как функционирует кэш-память, представим человека, работающего за письменным столом. Папки и документы, которые он использует постоянно, лежат на столе (в кэш-памяти). Для доступа к ним достаточно протянуть руку.

    Бумаги, которые нужны ему реже, хранятся недалеко на полках (в оперативной памяти). Чтобы их достать, нужно встать и пройти несколько метров. А то, с чем человек в настоящее время не работает, сдано в архив (записано на жесткий диск).

    Чем шире стол, тем больше документов на нем поместится, а значит, работник сможет получить быстрый доступ к большему объему информации (чем емкость кэша больше, тем в теории быстрее работает программа или устройство).

    Иногда он допускает ошибки – хранит на столе бумаги, в которых содержатся неверные сведения, и использует их в работе. В результате качество его труда снижается (ошибки в кэше приводят к сбоям в работе программ и оборудования). Чтобы исправить ситуацию, работник должен выбросить документы с ошибками и положить на их место правильные (очистить кэш-память).

    Стол имеет ограниченную площадь (кэш-память имеет ограниченный объем). Иногда ее можно расширить, например, придвинув второй стол, а иногда нельзя (объем кэша можно увеличить, если такая возможность предусмотрена программой; кэш оборудования изменить нельзя, так как он реализован аппаратно).

    Другой способ ускорить доступ к большему объему документов, чем вмещает стол – найти помощника, который будет подавать работнику бумаги с полки (операционная система может выделить часть неиспользуемой оперативной памяти для кэширования данных устройств). Но это всё равно медленнее, чем брать их со стола.

    Документы, лежащие под рукой, должны быть актуальны для текущих задач. За этим обязан следить сам работник. Наводить порядок в бумагах нужно регулярно (вытеснение неактуальных данных из кэш-памяти ложится «на плечи» приложений, которые ее используют; некоторые программы имеют функцию автоматической очистки кэша).

    Если сотрудник забывает поддерживать порядок на рабочем месте и следить за актуальностью документации, он может нарисовать себе график уборки стола и использовать его, как напоминание. В крайнем случае – поручить это помощнику (если зависимое от кэш-памяти приложение стало работать медленнее или часто загружает неактуальные данные, используйте средства очистки кэша по расписанию или раз в несколько дней проводите эту манипуляцию вручную).

    С «функциями кэширования» мы на самом деле сталкиваемся повсеместно. Это и покупка продуктов впрок, и различные действия, которые мы совершаем мимоходом, заодно и т. д. По сути, это всё то, что избавляет нас от лишней суеты и ненужных телодвижений, упорядочивает быт и облегчает труд. То же самое делает и компьютер. Словом, если бы не было кэша, он бы работал в сотни и тысячи раз медленнее. И нам бы вряд ли это понравилось.

    f1comp.ru

    Кэш, кеш, cash - память. Для чего нужна кэш память? Влияние размера и скорости кэша на производительность.

    Кэш - память (кеш, cash, буфер - eng.) - применяется в цифровых устройствах, как высокоскоростной буфер обмена. Кэш память можно встретить на таких устройствах компьютера как жёсткие диски, процессоры, видеокарты, сетевые карты, приводы компакт дисков и многих других.

    Принцип работы и архитектура кэша могут сильно отличаться.

    К примеру, кэш может служить как обычный буфер обмена. Устройство обрабатывает данные и передаёт их в высокоскоростной буфер, где контроллёр передаёт данные на интерфейс. Предназначен такой кэш для предотвращения ошибок, аппаратной проверки данных на целостность, либо для кодировки сигнала от устройства в понятный сигнал для интерфейса, без задержек. Такая система применяется например в CD/DVD приводах компакт дисков.

    В другом случае, кэш может служить для хранения часто используемого кода и тем самым ускорения обработки данных. То есть, устройству не нужно снова вычислять или искать данные, что заняло бы гораздо больше времени, чем чтение их из кэш-а. В данном случае очень большую роль играет размер и скорость кэш-а.


    Такая архитектура чаще всего встречается на жёстких дисках, SSD накопителях и центральных процессорах (CPU).

    При работе устройств, в кэш могут загружаться специальные прошивки или программы диспетчеры, которые работали бы медленней с ПЗУ (постоянное запоминающее устройство).

    Большинство современных устройство, используют смешанный тип кэша, который может служить как буфером обмена, как и для хранения часто используемого кода.

    Существует несколько очень важных функций, реализуемых для кэша процессоров и видео чипов.

    Объединение исполнительных блоков. В центральных процессорах и видео процессорах часто используется быстрый общий кэш между ядрами. Соответственно, если одно ядро обработало информацию и она находится в кэше, а поступает команда на такую же операцию, либо на работу с этими данными, то данные не будут снова обрабатываться процессором, а будут взяты из кэша для дальнейшей обработки. Ядро будет разгружено для обработки других данных. Это значительно увеличивает производительность в однотипных, но сложных вычислениях, особенно если кэш имеет большой объём и скорость.

    Общий кэш, также позволяет ядрам работать с ним напрямую, минуя медленную оперативную память.

    Кэш для инструкций. Существует либо общий очень быстрый кэш первого уровня для инструкций и других операций, либо специально выделенный под них. Чем больше в процессоре заложенных инструкций, тем больший кэш для инструкций ему требуется. Это уменьшает задержки памяти и позволяет блоку инструкций функционировать практически независимо.При его заполнении, блок инструкций начинает периодически простаивать, что замедляет скорость вычисления.

    Другие функции и особенности.

    Примечательно, что в CPU (центральных процессорах), применяется аппаратная коррекция ошибок (ECC), потому как небольшая ошибочка в кэше, может привести к одной сплошной ошибке при дальнейшей обработке этих данных.

    В CPU и GPU существует иерархия кэш памяти, которая позволяет разделять данные для отдельных ядер и общие. Хотя почти все данные из кэша второго уровня, всё равно копируются в третий, общий уровень, но не всегда. Первый уровень кеша - самый быстрый, а каждый последующий всё медленней, но больше по размеру.

    Для процессоров, нормальным считается три и менее уровней кэша. Это позволяет добиться сбалансированности между скоростью, размером кэша и тепловыделением. В видеопроцессорах сложно встретить более двух уровней кэша.

    Размер кэша, влияние на производительность и другие характеристики.

    Естественно, чем больше кэш, тем больше данных он может хранить и обрабатывать, но тут есть серьёзная проблема.

    Большой кеш - это большой транзисторный бюджет. В серверных процессорах (CPU), кэш может использовать до 80% транзисторного бюджета. Во первых, это сказывается на конечной стоимости, а во вторых увеличивается энергопотребление и тепловыделение, которое не сопоставимо с увеличенной на несколько процентов производительностью.